Categories
Technology Audio DIY DSP Loudspeaker Speakers

Acoustic panels and DSP – Both are beneficial

It is tempting to consider “room correction” with Digital Signal Processing (DSP) as a substitute for acoustic treatment. We implemented both in the same room to see what the effects actually are.

Experimental setup: DSP and acoustic panels

The setup used is a normal living room/home theater. The loudspeakers are Genelec 8351A active monitors with DSP and automatic calibration using a microphone and frequency sweeps.

Home theater with active DSP speakers
The test setup with Genelec active monitors.

Five acoustic panels were placed in the room. They are mineral wool panels measuring 60x60x10 centimeters. Two of them were placed at the side walls in order to address first sidewall reflections and three of them were placed behind the listener by the back wall. The measurement point is also the normal listening point. Measurements were done with REW software:

https://www.roomeqwizard.com/

The effect of acoustic panels and DSP on room response

Effect of acoustics panels and DSP on frequency response.
Effect of acoustic panels (top) and DSP (bottom).

From the magnitude response we see that the acoustic panels bring down some of the peaks in the mid-range. When we then apply DSP and automatic calibration, we get attenuation of the low-frequency peaks caused by room modes. DSP does not really affect the mid-range and the highs. It only raises their level back to where it was earlier. Using DSP and equalizing for mids and highs would be very difficult, because notches and peaks are very narrow.

Waterfall chart showing reduced decay time with acoustic panels
Waterfall charts show faster decay at mid-range frequencies when acoustic panels are applied.

Spectrograms show massive amounts of energy in the bass domain, where we have room modes affecting. Panels this size should not be very effective at long wavelengths according to the manufacturer and our magnitude plot. Yet, adding acoustic panels brings down the energy across the frequency range according to the spectrogram. DSP reduces the bass peaks which, of course, reduces the energy in that region. DSP brings up the mids and highs, so we can see slightly increased energy in that region, which leads to an evenly distributed energy across the spectrum of frequencies.

Effect of acoustic panels and DSP on acoustic energy content
Spectrograms of the reference condition (top), with acoustic panels (middle), with acoustic panels and DSP (bottom).

Conclusions

So do you need both digital signal processing and acoustic treatment? Yes. Looking at the magnitude response, we see that DSP addresses the peaks in the bass region and adjusts for the overall level, while the acoustic panels address the mid-range frequencies. Looking at the energy spectrum, we can see that actually both acoustic panels and DSP even out the energy distrubtion across the frequency range. It is encouraging to see that placing only five panels has a measurable effect. Headphones are immune to room acoustics, but benefit from DSP. Check out our post on headphone DSP: https://rdphysics.com/2021/06/14/dsp-for-headphones

Video

This blog post can be found in video format as well.

  

Categories
Technology Audio DIY DSP Headphones

Digital Signal Processing – Improve your headphones for free

Using a computer as your signal source gives you immense DSP possibilities. It does not cost a thing and reverting back is easy in case you do not like it. There is really no reason not to give it a try. A good place to start is here:

https://github.com/jaakkopasanen/AutoEq
There you will find EQ presets for most headphones and links to applying equalization in your operating system using Equalizer APO. Some users may like the Peace add-on which can be found together with Equalizer APO. If you have issues with system-wide equalization, you may want to try a plug-in for your music player. We can recommend Foobar2000 (oldie but goldie) and Math Audio Headphone EQ.

Math Audio preset files for Porta Pro and HD800S headphones

Here’s the preset file to be used in the Math Audio plug-in when listening to Koss Porta Pro headphones. It’s based on Oratory1990’s EQ profile.

Equalizing curve for Koss Porta Pro headphones
EQ for Koss Porta Pro based on Oratory1990’s measurements

We found the equalizing curve for Sennheiser HD800S to be too harsh, brightening up the sound too much. Therefore, the gains of the peaking EQ were halved and entered into the Math Audio plug-in. You can download it here:

Equalizing curve for Sennheiser HD800S headphones
Modified Sennheiser HD800S EQ

We have got to remember that the EQ files found online are obtained using a measurement head and aiming at a flat frequency response. However, each individual has physically different ears 
and a flat frequency response may not be what we actually want. The recordings that we listen to vary and the type of music varies. The presets are a good starting point, but they should be tweaked to make sure the sound is to your liking. Are there any downsides to processing the signal? There could be some artifacts from filtering such as pre-echo and you could get added distortion from excessive bass boost, but as long as it sounds better to you then that’s all that matters. Give it a try!

Video

This post is available in video format.
Categories
Technology Audio DIY DSP Headphones Loudspeaker Speakers

Headphones are better than loudspeakers – One factor is behind it all

The argument for headphones instead of loudspeaker as your main sound system is one that you don’t hear too often. Which is why we think it’s important to make it here. It all boils down to one root cause, and that root cause is the room. Let’s divide the consequences of the room into two categories: cost and sound.

Cost

First, speakers are played in a room you need more power. Power means power amplifiers. You need to buy expensive amps to power your loudspeakers. Second, you need to place those loudspeakers somewhere, so you need to buy stands. Or if they are floor-standing speakers you need to buy feet. You need to connect them with cables and buy other accessories. Third, you need to acoustically treat your room, so you need to buy acoustic panels, diffusers, bass traps etc. Fourth, you need to buy presents to your spouse because you’re placing the speakers in the middle of the room.

Sound

You can buy good loudspeakers and ruin them by placing them in a bad listening environment. Optimally, you would have the loudspeakers and the listening position at least two meters away from the nearest wall. However, that is seldom even possible in the available space. You would need a large room. And with this kind of placement, a livingroom quickly becomes a listening room only. Headphones, on the other hand, have multiple benefits compared to loudspeakers:

  • Single point source
  • No crossovers
  • No sweet spot or particular listening position
  • No room effects
  • Tonal balance can be fixed using only DSP

Some of the drawbacks often stated include poor sound stage or imaging. People say that it sounds like the sound is coming from inside one’s head and it doesn’t feel like you’re at a concert. It is a matter of personal preference, but we suggest looking at headphone listening as something separate and different from live events or loudspeaker listening. It is our subjective opinion that crossfeed will not correct for this phenomena and only makes the sound worse. Another common argument is that there’s no physical sensation of bass. While that is true, the pros outweigh the cons.

Recommended hardware

Which ever headphones you use, applying equalizing with the help of DSP is definitely worth considering. Check out our post on the topic:

Sennheiser HD800S open headphones.

 Enthusiast level:

Hobby level:

  • Sennheiser HD650
  • DAC/amp in price range 200-300€
  • DSP at signal source

Budget level:

  • Koss Porta Pro
  • Analog jack or DAC/amp in 100-150€ price class (get one second-hand, for example)
  • DSP at signal source

Video

The contents of this post can be found in video format

Categories
Technology 3D printing Audio DIY Loudspeaker Speakers

Practical 3D printed desktop speakers – FR4

The third version of our 3D printed full-range FR loudspeaker series used metal-filled filament to add density and stiffness to the enclosure. It worked in that regard, but the material was unpractial due to brittleness both during printing and in the final product.

What has changed compared to the FR3 speaker

For the fourth version we switched to wood-filled filament, which is more ductile and easier to process. The surface is quite nice straight out of the printer thanks to the matte surface. A quick touch with an orbital sander gives a smooth finish. The spherical shape of the enclosure remains the same as in the FR3 speaker, because it was proven to be very good in terms of resonances and edge diffraction. The diameter of the driver, enclosure and tripod legs was reduced to obtain a more slender design for desktop use. The binding posts are upgraded to sturdy Dayton Audio binding posts. The driver used is the Tang Band W3-1878, and the leadscrews for the legs are 12 mm. Leadscrew nuts are bonded into recesses in the enclosure and allow for adjustment of the legs. Small TPU feet can be printed and placed at the ends of the leadscrews in order to avoid scratching the desktop. These are satellite speakers and need a subwoofer to compliment the lower frequency spectrum.

You can 3D print your own sub and satellite system by purchasing the STL files from our Etsy Shop.

Video

Categories
Technology 3D printing Audio DIY Loudspeaker Speakers

Powerful 3D printed 5 inch subwoofer – SW2

Subwoofer Concept

Our previous 3d printed subwoofer, the SW1, is a 13 liter subwoofer with a 6.5″ driver, a matching passive radiator and a plate amp. We wanted to develop something smaller that would still offer the bass extension that satellite speakers so badly need. The result is the SW2 using a Tang Band W5-1138 5″ long-throw driver and the same Dayton Audio DSA175 passive radiator as in the SW1. The enclosure is now only 5 liters and much easier to fit on a desktop. The passive resonator allows tuning the resonance frequency to avoid overlap with room modes, for example. The spherical shape is optimal for material use and stiffness. Combined with the small diameter driver with large surrounds, the appearance is quite unique. If a traditional box is what you want, then this build is not for you.

Measurements

The measured resonance frequency of the passive radiator indicates that some air-coupling occurs due to the downward firing placement. Simulated resonance frequency matches the measured value (53 Hz) when 16 grams of added mass is used. Mass can be further added using washers to tune the response. In practice, the frequency response starts to drop below 50 Hz. The Arylic amplifier offers DSP capabilites and using a computer as the source allows unlimited DSP with zero cost. Therefore, frequency response in not that meaningful especially when considering the room effects, but we have included some measurements to give an idea of the natural response especially around the lower cut-off.

3D printing

The enclosure is printed in one part (234 mm diameter) and takes approximately 1.5 kg of filament. Print time is about 48 hours. The mass can be increased by lining the walls with sound deadening mat. Although the external wall is spherical, there is a cylindrical inner wall that braces the woofer to the passive resonator and, thanks to a single curvature surface, allows easy installment of thick sound deadening mat. The drivers are fastened using 4.2 mm wood screws. There is a geometry file for a gasket for the woofer which can be printed from TPU. Traditional gasketing methods will work, but the 3D printed gasket is seamless and has the screw hole pattern accurately incorporated. The binding posts are recessed deep into the enclosure and only accept banana plugs in that configuration. An O-ring under the binding post washer is recommended and there is a chamfer for it. 3D printing using a wood-filled filament allows easy sanding for a smooth surface finish. The photos show 15 minutes worth of post-processing making this a very easy and fast build without compromising in function and looks.

Images

Sound quality

The subwoofer was compared to the much larger, THX certified Logitech Z623 subwoofer. The sound is very similar, but in a much smaller package. The SW2 is a great companion for small satellite speakers and brings fullness to the bass. Electronic music will benefit from the “boom” offered by this small unit, while other types of music may require turning down the level a bit for a tighter bass.

Links and video

The 3D files can be found in Etsy store:

https://www.etsy.com/shop/RDPhysics

Please support us by using the affiliate link below just before ordering the components:

TangBand W5-1138 on SoundImports.eu

Dayton Audio DSA175-PR on SoundImports.eu

Arylic 2.1 BT amp on SoundImports.eu

Categories
Technology 3D printing Audio DIY Loudspeaker Speakers

3D printed active subwoofer – SW1

Our 3D printed full-range speakers needed something to beef up the lower end of the frequency spectrum. We set out to design a compact subwoofer that can be used together with our FR3 speakers. The result is a 13 liter enclosure with a 6.5″ driver, a matching passive resonator and a plate amp. The passive resonator allows tuning the resonance frequency to match room modes, for example. The plate amp can power satellite speakers and has a fixed high-pass filter. The low-pass cut-off frequency for the subwoofer can be adjusted and the level too, which means that this system can be easily mated with signal sources that do not have equalizing or DSP capabilities in themselves.

3D printing

The enclosure consists of two parts, which are glued together after printing. Total print time is about 100 hours and uses about 4 kg of filament. Support is only needed for the small recess where the plate amp is mounted. Dual-material printing is not needed. The mass of the enclosure can be increased by filling the walls with epoxy through the holes in the back. A geometry file for 3D printing a matching funnel is provided, too. 2 kg additional mass can be obtained this way.

The 3D files can be found on Thingiverse for free:

https://www.thingiverse.com/thing:4802531

Please support us by using the affiliate link below just before ordering the components:

Dayton Audio DSA175 on SoundImports.eu

Dayton Audio DSA175-PR on SoundImports.eu

Lepai LP210PA amp on SoundImports.eu

Video

The video below explains the concept in more detail.

Categories
3D printing Audio DIY Loudspeaker Speakers Technology

Full-range desktop speakers – FR3

Metal-filled filament and internal support add significant mass and rigidity.

The first version used internal ribbing and bitumen paint to reduce enclosure resonance. The second version used an external carbon fiber shell. Both approaches were a bit cumbersome. For the third version we wanted to fully use the capabilities of 3D-printing. Therefore, a high-density metal-filled filament was used and internal gyroid-shaped support was used even where overhanging surfaces would not have required it. In addition, height and tilt can be adjusted using three threaded rods that form a tripod. The finished enclosure with three 14 mm trapezoid-threaded nuts bonded to it weighs 1.2 kg.

Please support us by using the affiliate link below for ordering the Dayton Audio RS-100 drivers:

SoundImports.eu

Categories
Audio 3D printing Carbon fiber DIY Loudspeaker Speakers Technology

Exotic carbon fiber skinned loudspeakers with excellent stiffness – FR2

Additive manufacturing

Using additive manufacturing (AM) has many benefits over traditional construction methods, such as design freedom, fast product development and integration of functions into one part. There are drawbacks as well. The plastic AM parts tend to be low in mass and not very stiff. Air-tight walls are sometimes difficult to achieve, too.  Adding mass by increasing fill density of the print is not a good solution, since it adds build time and material cost. Stiffeners and bitumen paint were used in (Version 1). However, the stiffeners were cumbersome to paint with bitumen and it did not add significant weight. For Version 2, we used the vent as a part of the mechanical structure and used a thicker wall. But some additional means were needed to bring 3D printed enclosures on par with traditional cabinet materials.

Carbon fiber in loudspeker building

Dry carbon fiber tow was wound around the enclosure and then wetted with epoxy resin. The composite skin was sanded after curing and additional coats of epoxy were added. The result is a unique unidirectional carbon fiber surface finish. The composite shell adds mass and stiffness to the enclosure. The loudspeaker sits on four feet printed from TPU material, which allows rotating the speaker.

Make them yourself

The following changes were made to Thingiverse:

  • Updating the driver dimensions and screw pattern to the latest Alpair 7 MS.
  • The weight of the loudspeaker will try to bend the speaker stand. It was therefore changed from a shell-like structure to a solid.

If you plan to order the drivers, please support us by using the affiliate link below:

SoundImports.eu

Video

Categories
Audio 3D printing DIY Loudspeaker Speakers Technology

Clean sound and rich detail with full-range speakers – FR1

Construction

The first version of #3D-Fi speakers are spherical (180 mm diameter) full-range loudspeakers with 3 liter internal volume. The box is vented with two rectangular ports on both sides. The ports act as stiffeners and also give more space to assemble the connectors and amplifier inside the enclosure. Internal wall stiffeners are used in order to maximize internal volume as opposed to simply increasing wall thickness, since a small external size is typically desired while internal volume needs to be high enough for the driver to work properly. We use bitumen paint to both seal the enclosure and also to add mass. The enclosure is printed as one part using UPM Formi3D cellulose composite filament. Metallic nuts are pressed on the backside of the flange to receive the machine threaded screws that hold the emitter.

Setup

Our setup uses a laptop PC as a source which allows equalizing the frequency response at the digital source. The signal is transferred via USB to a USB-powered DAC/pre-amplifier with volume control and a power switch. The analog signal is then transferred to one of the speakers where it is amplified using a two-channel chip amplifier board that is powered by a 65 W laptop charger. The amplified signal of the other channel is then transferred to the other speaker for reproduction. The design uses 6 cm full-range emitters without any analog filters or corrections.

The design was updated for Thingiverse:

  • Machine screws and nuts replaced with 2.5 mm hole for wood screws
  • Fully passive design without the amp. Instead, 4 mm holes for binding posts only
  • Sealed enclosure

If you like the design and plan on building one yourself, please support us by using the affiliate link below for ordering the components:

MarkAudio Alpair 6 on SoundImports.eu

Sound

A reference system with Genelec 8040 speakers was used for comparison. The sound of the 3D-Fi speakers is very unique and quite tricky to get the most out of. The full-range emitters are very sensitive to off-axis listening and the listening distance also changes the sound markedly. Even slightly tilting one’s head has an effect. It seems that finding the best spot is challenging and takes time. It’s hard to remember not to move an inch while listening to these speakers. However, all the effort pays off, because there is a reward at the end. The sound stage is unbelievably good and there is a huge presence from such a tiny speaker. The Genelecs sound distant and all over the place compared to the very precise and point-like sound of the 3D-Fi speakers. Obviously the bass is not very deep and the sound pressure levels achievable with 6 cm cones is limited. On the other hand, they seem to tolerate significant bass boost without distortion and in normal listening the cone travel stays in check. Overall, a very difficult set of speakers to get into and they are quite picky with the type of music played, but once a good recording is found together with the right listening conditions…Bliss!

Acknowledgements: We wish to thank UPM for the materials and support. J-P Virtanen took the studio pictures and Markus Markkanen the ones in the library.