Categories
Circular economy 3D printed 3D printing Audio DIY Eco-friendly Loudspeaker Recycling Speakers Sustainable development

Circular Sound – Recycling loudspeakers with the help of 3D printing

This article describes the Circular Sound loudspeaker models in detail. We will dive into the technical specifications and also go into detail on how you can build your own.

The Circular Sound Process

All Circular Sound products rely on a circular flow of materials. There are two paths to obtaining circularity, but they are not mutually exclusive:

  1. Biological cycle: Using bio-based and bio-degradable enclosure materials.
  2. Technical cycle: Remanufacturing from old components.

The biological cycle means using bio-materials such as UPM Formi 3D, BrightPlus BrightBio, and Sulapac Flow. Our mono-material design principle allows easy recycling of the bio-materials at end-of-life.

The technical cycle means we disassemble old loudspeakers, inspect and measure the components and use them in a new product. This is called remanufacturing. The components typically have a decade or more of life remaining, but the old product they were in was no longer wanted by users.

We take sound quality very seriously and often this means only woofers can be reused, while wideband transducers need to be of virgin origin. Nevertheless, the majority of the mass resides in the woofers and enclosure, and therefore the recycled fraction of Circular Sound loudspeakers is 70-80%. You can read more about the circular economy and environmental impact in our blog.

Circular Sound Eikosa

The Circular Sound Eikosa gets its name from the Greek word eikosáedron referring to the 20-faced polyhedron. It’s a Bluetooth loudspeaker that uses upcycled woofers for bass frequencies and a virgin wideband transducer for producing mids and highs. The enclosure is 3D printed from a PLA-based polymer. Each Eikosa is slightly different on the inside depending on the old components used, but thanks to our acoustic design, the low-frequency reproduction varies very little from unit to unit. Besides, the user can adjust the bass tuning and level of the bass frequencies based on personal preference and listening space. You can order an assembled Eikosa by backing our crowdfunding campaign.

ModelEikosa
Size240 mm diameter
Weight~4 kg
ShapeRegular icosahedron
MaterialModified PLA
Amplifier2×30 W
InputsBluetooth 5.0
Power supply19 V laptop charger
Wide-band driver3″ BMR
WoofersUpcycled dual 4-6″
Frequency response60-20000 Hz (+-3 dB)

Circular Sound Sfaira (Pair)

Sfaira means sphere in Greek and refers to the shape of the enclosure. The spherical shape has many benefits in loudspeakers. It is made by 3D printing Sulapac Flow material, which is a bio-based and bio-degradable wood-filled plastic. The Sfaira is intended to be used as a stereo pair and supported by a subwoofer, such as the CS-012, if required.

Circular Sound CS-012 Subwoofer

The Circular Sound CS-012 is the first loudspeaker design in the Circular Sound line-up. The donor components come from an old Yamaha YST-SW012 bass-reflex subwoofer, which you can find second-hand for about 50€. Additive manufacturing was used to produce a smaller, sealed enclosure loudspeaker. The material used in the prototype is a bio-based material produced by BrightPlus. It has a natural dye made from woad by Natural Indigo Finland.

The original Yamaha loudspeaker is designed to be used as a single subwoofer unit placed somewhere on the floor out of sight. The new product, on the other hand, is designed to be used in a stereo configuration (2 pcs) and placed under the main speakers. It serves a different function compared to the original product, but no new materials need to be consumed. We are not injecting a new product made from virgin materials into the economy. Instead, we are taking two old ones out and replacing them with one value-added product. This is what Circular Sound is about. You don’t have to wait for distributors to bring sustainable products to your local market. You can start making these today. The files are shared for free under a Creative Commons license on Thingiverse.

3D printing a bio-based loudspeaker enclosure
Categories
Bluetooth speaker 3D printing Audio Circular economy DIY Loudspeaker Recycling Speakers Sustainable development

Bluetooth loudspeaker without an internal battery

What’s wrong with having batteries in your portable boombox?

Wireless electronics, such as bluetooth speakers, are extremely popular nowadays. All such devices must have a power source and typically it is a lithium-ion battery. However, the demand for battery raw materials is rising at an alarming rate:

The supply of some of these [battery] materials, in particular cobalt, natural graphite and lithium, is of concern today and for the future in view of the large quantities needed and/or very concentrated supply sources.


European Battery Alliance (EU)

As we have discussed earlier, when launching our Circular Sound program, the best solution for reducing reliance on critical raw materials is to reduce their use. The RD Physics BB1 boombox enables you to do just that. It is designed to use existing external power sources and therefore no new batteries are needed. Battery service-life or battery replacement is no longer a concern.

Alternatives to dedicated batteries

The BB-project started by looking at how power tools are sold without accompanying batteries. The idea being that the user needs only one battery (plus spares) that fits all tools. While this approach reduces the amount of batteries needed, it is also used to tie the customer to a specific brand. We wanted a universal solution and therefore the USB-C standard was chosen. The BB1 and BB2 boomboxes use a USB-C port as an interface to feed power to the amplifier. The boombox can be connected to any USB port: power banks, phone chargers, laptops, extension cords, solar panels etc. Obviously, the input voltage and current draw is limited, which leads to limited sound pressure level (SPL).

The weather-proof USB-C port is located at the top.
Frequency responce of 3D printed bluetooth speaker.
Frequency response of BB1 at maximum drive level.
BB2 boombox with Dayton Audio RS100 drivers.
Frequency response of BB2 at arbitrary drive level.

Components

What you will need to build your own batteryless boombox:

  • Geometry files for 3D printing (free under Creative Commons License at Thingiverse)
  • 3D printer big enough to fit a 235 mm diameter sphere
  • Slightly over 1 kg of filament depending on your settings
  • Two active drivers. Either Peerless 3″ (BB1) or Dayton Audio 4″ (BB2)
  • One 6½” Dayton Audio passive resonator
  • A Sure (Wondom) bluetooth board with additional cables set
  • USB-C panel mount plug (from eBay) and 6 mm DC plug
  • Wood screws (4.2 mm for the drivers and resonator, 3 mm for the BT board)
  • Drawer handle, IKEA Eneryda 703.475.16
  • Damping material (bitumen or similar automotive damping mat and fibrous wadding, for example pillow stuffing)
  • Optional: Wall mount bracket, Genelec 4000-410B
  • Minimal soldering capabilites

The enclosure for the BB1 and BB2 can be downloaded from the link above. Assembling everything takes 30 minutes.

3D printed boombox enclosure
3D printed enclosure ready for assembly.

How to build the BB1/BB2 bluetooth speaker

  1. Start by soldering the 6 mm DC plug to the USB connector. Red (+) goes to center pin and black (-) to outer shell.
  2. Connect DC power and speaker cables to bluetooth board and fasten the board inside the enclosure by tightening the screws via the driver openings.
  3. Mount the USB connector and handle.
  4. Line the inside of the enclosure with bitumen or similar visco-elastic damping material. Heat will aid in conforming to internal shapes. Make sure the damping material is fully bonded to the walls.
  5. Bring the speaker wires through the driver openings and solder them to the drivers. Make sure polarity is the same for both drivers. Then fasten the drivers using wood screws.
  6. Fill the enclosure with fibers (cotton, polyester, wool etc.) and fasten the passive resonator.
  7. Optional: Attach the wall mount bracket.
  8. Connect a USB port and the bluetooth board powers on automatically. Pair your signal source with the device (“WONDOM”). Enjoy!
BB1 portable bluetooth speaker with 3D printed enclosure.
BB1 ready to rock.

Assembly instructions

Concept and sound test