As we know, the World is not the same place if we compare it to the 1980’s when I was born.
Technology, cars, life, culture, basically everything has changed. We are the first generation who must handle this correctly and transfer these elements to the next generation.
The same comes to music. My memories are going back to my childhood, LPs, cassettes then CDs and Minidisc (whose idea was that?). I listened to Kaija Koo ‘yes you read that right’ because there was nothing else to listen to.
Do you remember the first visits to record shops and how interesting it was to get a new CD in your hands! I can still remember that feeling and you don’t get that same feeling playing new albums on your phone.
Joonas Sirviö, CEO at Granulous
My old speaker system still exists in my dad’s warehouse and I haven’t used that since my childhood. It feels sad and I believe I’m not the only one who has a similar situation.
But how can loudspeakers be a perfect example of circularity?
The world’s population has increased from 6,15 billion in 2000 to over 8 billion in 2023. Last year humanity used up all the natural resources the Earth can sustainably regenerate already on the 28th of July. For the rest of the year, mankind was inflicting an unsustainable toll on the planet.
Old loudspeakers are especially problematic due to rare-earth elements found in the magnets of loudspeaker transducers. Rare-earth elements are essential for manufacturing permanent magnets, so this is a super interesting point when aiming for more circular societies.
Despite the changes and forgotten loudspeakers in the world, the basis of the good life has been the same since “back in the days” and it is finding the good feeling.
The feeling is what we are looking for and sustainability isn’t any different. We are usually talking about sustainability in a broad sense. But we need to understand that the changes cannot be huge at the start. They must be easily digested. Governments will do their part to find guidelines, but as individuals, we can make tiny changes in our lives that can turn into huge impacts. You feel good when you do something good, and we must be proud of ourselves when this happens even if it seems like a small thing to do.
Circular Sound loudspeakers are exactly what it is all about; circularity and feeling in their perfect shape. Design can feel good, the truth about reducing the impact on the environment feels good, and the beautiful sound from the speakers, whatever you are listening to, feels good. It gets you where the great dopamine gives you the right tools for happiness.
This is a beautiful piece of life, that can be your impact on the future and the next generations. I know and probably you know as well that we have the responsibility to act for a better future and now you can be the climate hero and listen to good music at the same time.
Joonas Sirviö, CEO at Granulous
About the author:
Joonas is a Co-Founder and CEO of Granulous start-up company who has developed a new plastic replacement material utilizing spent grains from brewing industry. He's mind game is to save the world one grain at a time.
Circular economy is a model of production and consumption that prioritizes resource efficiency and waste reduction. It involves designing products with durability and repairability in mind, reusing and refurbishing materials and products, and recycling materials at the end of their useful life. The goal is to keep resources in use for as long as possible and minimize environmental impacts. Currently, only 7.2% of the materials we use circulate back into the economy 1. This number needs to increase in all industries, including the loudspeaker industry, in order to reach the Sustainable Development Goals, more specifically SDG 12.5 2:
“By 2030, substantially reduce waste generation through prevention, reduction, recycling, and reuse”
The current linear model of loudspeaker production
The global loudspeaker market size is anticipated to reach USD 8.48 billion by 20253. Its effect on the circularity gap can not be ignored. Most manufacturers using virgin materials attempt to mitigate their environmental impact by focusing on long lifespans by:
Producing long-lasting products
Offering spare parts and warranty repairs
Facilitating a second-hand market for pre-owned loudspeakers.
However, it does not matter if a product can be used forever if nobody wants it anymore. Our research shows that having a specific need is the main reason for loudspeaker buyers not using the second-hand market. This is confirmed by studying the thousands of near-zero-priced loudspeaker listings in online marketplaces. There is low demand and a high supply of old but fully functional loudspeakers. The current economy has no end-of-life solution.
Old loudspeakers with negligible market value.
The importance of loudspeaker magnets
Not having an end-of-life solution for old loudspeakers is especially problematic due to rare-earth elements found in the magnets of loudspeaker transducers. Rare-earth elements are essential for manufacturing permanent magnets. Permanent magnets are critical components in most decarbonisation technologies4 .
Lithium and rare earths will soon be more important than oil and gas. Our demand for rare earths alone will increase fivefold by 2030.
Ursula von der Leyen, President of the EU commission5
The EU imports 98% of its magnets from China and less than 1% is recycled6. Relying on China poses a geopolitical and supply chain risk. China has a history of export restrictions and weaponisation of REEs in trade wars7. Recycling is not commercially viable due to the high cost of manual separation of magnets and the relatively low price of the raw material itself8.
Loudspeaker transducers have large magnets containing precious materials.
The circular economy approaches to loudspeakers
The circular economy of loudspeakers can be described with the help of the 7Rs.
Rethink: Use fewer components and eco-friendly materials, combine functions, or make the product easy to disassemble and recycle.
Reduce: Spend less material and energy. Generate less waste.
Reuse: Sell in the second-hand market.
Repair: Fix broken loudspeakers by re-coning transducers, replacing components, and refurbishing the enclosure.
Remanufacture: Disassemble old loudspeakers and use the materials to make a new product.
Recycle: Use raw materials, such as plastic and metal, again.
Recover: Burn the enclosure for energy.
All of the approaches are a step forward from the current linear economy. The first two (Rethink and Reduce) are effective since they occur already at the design stage. However, they still rely on virgin materials and do nothing about the current levels of waste. The last two (Recycle and Recover) are not recommended, because they do not preserve added value and hardly generate any jobs or social well-being. Reuse and Repair are great if there still is demand for that product. Remanufacturing allows for meeting new user needs using existing materials. An example of remanufacturing is the RD Physics Circular Sound loudspeakers.
A new loudspeaker using components from old loudspeakers.
Benefits of circular economy
The benefits of a circular economy include reducing the extraction of virgin materials, reducing greenhouse gas emissions, creating new job opportunities, and improving the resilience of the economy. It also has the potential to create a more sustainable and profitable industry, reduce resource costs, and improve social and environmental outcomes. By introducing a circular economy for the loudspeaker transducers specifically, we can achieve:
Independence of imported magnets
Reliable supply chains
Reduced need to mine rare-earth elements
Preservation of added value in existing products
Utilization of electronics waste
Life-cycle impact assessment of loudspeakers
Life-cycle analysis can be used to quantify the impact of the circular economy of loudspeakers. The majority of the impact comes from magnets and the chemical processing of the rare-earth elements in them. For example, the Circular Sound Eikosa loudspeaker contains approximately one kilogram of magnets in the upcycled transducers it uses. The life-cycle impact assessment of 1 kg of magnet reported here is an average of several sources reported in two studies 9,10.
Impact category
Quantity
Unit
Global warming
69
kg CO2 eq.
Acidification
0.63
mol H+ eq.
Eutrophication (freshwater)
0.015
kg P eq.
Eutrophication (marine)
0.09
kg N eq.
Eutrophication (terrestrial)
1.26
mol N eq.
Ecotoxicity (aquatic)
331
CTUe
Human toxicity (carcinogenic)
3.4
CTUh
Ozone depletion
4.2*10-6
kg CFC-11 eq.
Particulate matter
0.12
kg PM2.5 eq.
Ionizing radiation
4.19
kBq U235 eq.
Water consumption
0.63
m3
Impact per kilogram of rare-earth permanent magnet
Conclusions
All industries need to transform into a circular economy in order to close the circularity gap and reach the Sustainable Development Goals. The current loudspeaker industry operates in a linear fashion and trusts that a long product life will mitigate environmental impact. However, there is no end-of-life solution available and precious raw materials found in the loudspeaker magnets end up in landfills.
Various circular economy solutions exist. Minimizing material use and swapping one material for another is an incremental improvement, but still involves virgin materials. Repairing and relying on a second-hand market assumes there is still a demand for the old product. Recycling the raw materials destroys the added value of the product and is not economically viable due to manual disassembly steps. Remanufacturing, on the other hand, offers a way to meet new customer needs using components and materials from old products.
A remanufactured loudspeaker 3D printed from bio-based materials and using components from an old subwoofer.
Upcycling old loudspeaker transducers and using them in a new product keeps the magnets in our economy and reduce the need to produce virgin magnets. This has quantifiable environmental impacts, such as avoiding 70 kg of CO2 equivalent in greenhouse gas emission per one kilogram of magnet.
Life cycle impact assessment (LCIA) is a tool used to evaluate the environmental impact of products or services across their entire life cycle. To measure these impacts, a variety of impact categories and units can be used. Here are some examples:
Global warming: This impact category measures the amount of greenhouse gases (primarily carbon dioxide) that are emitted over the life cycle of a product or service. The unit used is typically kilograms of carbon dioxide equivalent (kg CO2e).
Acidification: This impact category measures the amount of acidifying substances (such as sulfur dioxide and nitrogen oxides) that are emitted over the life cycle of a product or service. The unit used is typically moles of hydrogen ions (mol H+).
Eutrophication: This impact category measures the amount of nutrients (primarily nitrogen and phosphorus) that are released into the environment and contribute to the growth of algae and other aquatic plants. The unit used is typically moles of phosphate (mol PO43-).
Particulate matter (PM): This impact category measures the amount of fine particulate matter (PM2.5) that is emitted over the life cycle of a product or service. The unit used is typically micrograms of particulate matter per cubic meter (μg/m3).
Ecotoxicity (aquatic): This impact category measures the potential harm that a product or service may cause to ecosystems and their inhabitants. The CTUe (Characterization Factor Toxicity Unit – ecotoxicity) unit is based on converting the amount of a substance emitted during a product’s life cycle into a standardized ecotoxicity value. The ecotoxicity value is expressed in CTUe per kilogram (kg) of the emitted substance. The characterization factor takes into account various parameters such as the chemical properties of the substance, its persistence in the environment, its toxicity to aquatic organisms, and the extent of the area affected by the emissions.
Human toxicity (cancer): This impact category measures the potential harm that a product or service may cause to human health. The human toxicity value is expressed in CTUh per kilogram (kg) of the emitted substance. The characterization factor takes into account various parameters such as the chemical properties of the substance, its toxicity to humans, and the extent and duration of exposure. When the CTUh unit is used to assess cancer risk, it is often expressed as cancer cases per million people per year (cases/million/year), rather than CTUh/kg. The cancer risk is calculated by multiplying the amount of the substance emitted by its cancer potency factor, which represents the likelihood that the substance will cause cancer in humans. The resulting value is then converted into cancer cases using demographic and exposure data.
Ozone depletion potential: The ODP of a substance is determined by comparing its potential to deplete ozone to that of CFC-11. Many ozone-depleting substances, including CFCs, are banned. The use of CFC-11 as a reference substance is only relevant for historical analysis or for assessing the impact of new substances that may have similar properties to CFCs.
Ionizing radiation: It is used to represent the potential harm a substance can cause to human health through exposure to ionizing radiation. The unit kBq U235 represents the activity of uranium-235, which is a measure of the rate at which the material emits ionizing radiation. The unit kBq stands for kiloBecquerel, which is a unit of radioactivity. One kBq corresponds to 1,000 disintegrations per second.
Water consumption: This impact category measures the amount of water used over the life cycle of a product or service. The unit used is typically cubic meters (m3) of water.
Land use: This impact category measures the amount of land required over the life cycle of a product or service. The unit used is typically square meters (m2) of land.
There are many other impact categories that can be used in life cycle assessment, depending on the specific environmental and social impacts of interest.