3D printing Audio Technology

Full-range desktop speakers – FR2

A unique unidirectional carbon fiber surface finish gives mass and rigidity.

Additive manufacturing

Using additive manufacturing (AM) has many benefits over traditional construction methods, such as design freedom, fast product development and integration of functions into one part. There are drawbacks as well. The plastic AM parts tend to be low in mass and not very stiff. Air-tight walls are sometimes difficult to achieve, too.  Adding mass by increasing fill density of the print is not a good solution, since it adds build time and material cost. Stiffeners and bitumen paint were used in (Version 1). However, the stiffeners were cumbersome to paint with bitumen and it did not add significant weight. For Version 2, we used the vent as a part of the mechanical structure and used a thicker wall. Dry carbon fiber tow was wound around the enclosure and then wetted with epoxy resin resulting in a unique unidirectional carbon fiber surface finish. The composite shell adds mass and stiffness to the enclosure. The loudspeaker sits on four feet printed from TPU material, which allows rotating the speaker.

The following changes were made to Thingiverse:

  • Updating the driver dimensions and screw pattern to the latest Alpair 7 MS.
  • The weight of the loudspeaker will try to bend the speaker stand. It was therefore changed from a shell-like structure to a solid.

If you plan to order the drivers, please support us by using the affiliate link below: